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The design process: critique, intuition, and skills

® Prioritizing

The modeling process

The output product

e Search
¢ Implementation

e Fvaluation

* Mockups & prototypes
® Rendering

¢ \Working model / product



The Parametric Design Space
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Bone radius 2 mm Bone radius 1.5 mm Bone radius 1.3 mm

A B Danger Level Smoothing iterations 12 Smoothing iterations 6 Smoothing iterations 10 1
0.9
......... N 0.8
* 0.7
1000N * 0.6
Volume 59923 mm3, cost 33.18 USD 2 Volume 41029 mm3, cost 30.59 USD 3 Volume 26491 mmg, cost 25.80 USD 4 Volume 21398 mm3, cost 23.70 USD 05
Bone radius 2.5 mm Bone radius 2 mm Bone radius 1.5 mm 0.4

i C DISplaCemeﬂtS mm Smoothing iterations 8 Smoothing iterations 5 Smoothing iterations 7
0.3

0.2
0.1
500N 0

1 Volume 120795 mm3, cost 64.92 USD 2 Volume 82655 mmsg, cost 55.11 USD 3 Volume 54140 mm3, cost 45.98 USD 4 Volume 29002 mm3, cost 37.31 USD

1 Bone radius 1.2 mm, IsoCurves Bone radius 0.8 mm, IsoCurves Bone radius 1.2 mm
DISplacementS (mm) Smoothing iterations 6 Smoothing iterations 6 Smoothing iterations 6 I 15
e 12

o w o

1 Volume 107984 mmd, cost 57.83USD 2 Volume 34738 mm3, cost 35.85 USD 3 Volume 16769 mm3, cost 29.50 USD 4} Volume 30165 mmd, cost 33.84 USD



Introduction to Optimization Problems

In mathematics and computer science, an optimization problem is the
problem of finding the best solution from all feasible solutions. (wikipedia)

Types of Optimization Problems

e Continuous Optimization Vs. Discrete Optimization

e Unconstrained Optimization versus Constrained Optimization
e None, One or Many Objectives

e Deterministic Optimization versus Stochastic Optimization

From https://neos-guide.org/optimization-tree



Maximum / Minimum Problems

Problems of the first derivative

Guidelines for solving Max./Min Problems

1. Read each problem slowly and carefully. Read the problem at least three times before
trying to solve it. It is imperative to know exactly what the problem is asking. If you

misread the problem or hurry through it, you have NO chance of solving it correctly.

2. If appropriate, draw a sketch or diagram of the problem to be solved. Pictures are a
great help in organizing and sorting out your thoughts.

3. Define variables to be used and carefully label your picture or diagram with these

variables. This step is very important because it leads directly or indirectly to the creation
of mathematical equations.

From https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/maxmindirectory/MaxMin.html



Maximum / Minimum Problems

Problems of the first derivative

Guidelines for solving Max./Min Problems (continue)

4. Write down all equations which are related to your problem or diagram. Clearly
denote that equation which you are asked to maximize or minimize. MOST optimization
problems will begin with two equations. One equation is a "constraint" equation and the
other is the "optimization" equation. The "constraint" equation is used to solve for one of
the variables. This is then substituted into the "optimization" equation before
differentiation occurs. Some problems may have NO constraint equation. Some problems
may have two or more constraint equations.

5. Before differentiating, make sure that the optimization equation is a function of only
one variable. Then differentiate using the well-known rules of differentiation.

6. Verify that your result is a maximum or minimum value using the first or second
derivative test for extrema.

From https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/maxmindirectory/MaxMin.html



Maximum / Minimum Problems

PROBLEM (EXAMPLE 1): An open rectangular box with square
base is to be made from 48 ft.? of material. What dimensions
will result in a box with the largest possible volume ?

From https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/maxmindirectory/MaxMin.html



Maximum / Minimum Problems

SOLUTION: Let variable x be the length of one edge of the
square base and variable y the height of the box. The total

surface area of the box is given to be

48 = (area of base) + 4 (area of one side) = x2 + 4(xy),

so that 4xy = 48 - x?

48 z?
N 4zx

y

From https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/maxmindirectory/MaxMin.html



Maximum / Minimum Problems
We wish to MAXIMIZE the total VOLUME of the box
V = (length) (width) (height) = (x) (x) (y) = x?y .

However, before we differentiate the right-hand side, we will write it as a
function of x only. Substitute for y getting V =x%y =12x - (1/4)x3

Now differentiate this equation, getting

V'=12-(1/4)3x?*=12 - (3/4)x*=(3/4)(16 - x*> ) = (3/4)(4 - x)(4 +x) =0
for

x=4 or x=-4 .

But x > 0. Since the base of the box is square and there are 48 ft? of
material, it follows that 0 < x < 48°~.

So, If x=4 ft. and y=2ft., then V = 32 ft.3

From https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/maxmindirectory/MaxMin.html



Maximum / Minimum Problems

PROBLEM (EXAMPLE 2): Consider all triangles formed by lines
passing through the point (8/9, 3) and both the x- and y-axes. Find
the dimensions of the triangle with the shortest hypotenuse.

SOLUTION: Let variable x be the x-intercept and variable y the y-
intercept of the line passing through the point (8/9, 3) .

y_ 3
(8/9, 3) z z-—8/9
y
Y= "%
(x. 0) r — 8/9Y

From https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/maxmindirectory/MaxMin.html



Maximum / Minimum Problems
We wish to MINIMIZE the length of the HYPOTENUSE of the triangle

H = \,1'2 + y2

However, before we differentiate the right-hand side, we will write it as a
function of x only. Substitute for y getting

—~—— [ 7 3z \2
VETY Ty z —8/9

Now differentiate this equation using the chain rule and quotient rule,
getting

H' = (1,.:"2)(3”2 * (I _3;9)2) _1)’2{22 " 2(1 —3;9) - (@ )_(33',;)(231)( ) }

=(1/2)(=* + (; _‘”2,...-9)2) 1,..-~2(2){m e _""2,..-9> = :Sé'::.?g)z} - - gig)z)z =0




Maximum / Minimum Problems
so that (If A/B =0, then A=0)
8z

z — B
T = - 8/9)

ril - =
" =-8/9°

so that (If AB=0, then A=0 or B=0) x=0

(Impossible, since x> 8/9. Why ?) or
8

— =0
(z — 8/9)3

1 -

8

1= ,
(z — 8/9)3

1313

X=26/9 andy=13/3, H = ~ 5.21




Gradient Descent

Gradient descent is a first-order iterative optimization algorithm.

To find a local minimum of a function using gradient descent, one takes
steps proportional to the negative of the gradient (or of the approximate
gradient) of the function at the current point. If instead one takes steps
proportional to the positive of the gradient, one approaches a local
maximum of that function; the procedure is then known as gradient
ascent. Gradient descent is also known as steepest descent, or the
method of steepest descent.

Wikipedia



Gradient Descent

Gradient descent is based on the observation that if the multi-variable
function F(x) is defined and differentiable in a neighborhood of a point
a, then F(x) decreases fastest if one goes from a in the direction of the
negative gradient of F at a, -V F(a).

It follows that, if
a"t! = a” — yVF(a")
for v small enough, then F(a*) >= F(a"+!).

In other words, the term YV F(a) is subtracted from a because we want
to move against the gradient, namely down toward the minimum.



Gradient Descent

With this observation in mind, one starts with a guess xo for a local
minimum of F, and considers the sequence xp, x;, x2 such that
Xnt+1 = Xp — Yo VF(x,), n > 0.

we have
F(x9) > F(x1) > F(x2) > ---,

so hopefully the sequence x, converges to the
desired local minimum.




Grasshopper Galapagos - Genetic Algorithm

Evolutionary Principles applied to Problem Solving

Cons

Evolutionary Algorithms are (very) slow.
Evolutionary Algorithms do not guarantee a solution.
Pros

Evolutionary Algorithms are remarkably flexible.
Evolutionary Algorithms are also quite forgiving.

Evolutionary Solvers allow for a high degree of interaction with the user.

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos - Genetic Algorithm

Evolutionary Principles applied to Problem Solving

The Process: Example with a Fitness Landscape of a particular model

The model contains two variables (genes).

As we change Gene A, the state of the model
changes and it either becomes better or worse.

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos - Genetic Algorithm

Evolutionary Principles applied to Problem Solving

The Process: Example with a Fitness Landscape of a particular model

The initial step of the solver is to populate the
landscape (or "model-space") with a random
collection of individuals (or "genomes"). A genome
is nothing more than a specific value for each and

every gene.

In the above case, a genome could for example be
{A=0.2 B=0.5}. The solver will then evaluate the
fitness for each and every one of these random
genomes, giving us the following distribution:

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos - Genetic Algorithm

Evolutionary Principles applied to Problem Solving

The Process: Example with a Fitness Landscape of a particular model

2 EX e

Once we know how fit every genome is, we can
make a hierarchy from fittest to lamest.

We are looking for high-ground in the landscape and
it is a reasonable assumption that the higher
genomes are closer to potential high-ground than
the low ones. Therefore we can kill off the worst
performing ones and focus on the remainder.

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos - Genetic Algorithm

Evolutionary Principles applied to Problem Solving

The Process: Example with a Fitness Landscape of a particular model

Breeding the best performing genomes in
Generation O to create Generation 1

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos - Genetic Algorithm

Evolutionary Principles applied to Problem Solving

The Process: Example with a Fitness Landscape of a particular model

Repeating the above steps (kill off the worst
performing genomes, breed the best-performing
genomes) until we have reached the highest peak.

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos - Genetic Algorithm

Evolutionary Principles applied to Problem Solving

In order to perform this process, an Evolutionary Solver requires five interlocking parts,
We could call this the anatomy of the Solver.

® Fitness Function

e Selection Mechanism
e Coupling Algorithm

® Coalescence Algorithm

e Mutation Factory

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos = Evolutionary Principles applied to Problem Solving

Fitness Functions

Fitness is whatever we want it to be. We are
trying to solve a specific problem, and
therefore we know what it means to be fit. If
for example we are seeking to position a
shape so that it may be milled with minimum
material waste, there is a very strict fitness
function that leaves no room for argument.

Let's imagine the fitness landscape represents
a model that seeks to encase an object in a
minimum volume bounding-box. A minimum
bounding-box is the smallest orthogonal box
that completely contains any given shape.

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Gala PagOS = Evolutionary Principles applied to Problem Solving

Selection Mechanisms (that available in Galapagos)

Isotropic Selection, which is the simplest kind of algorithm you can imagine. It
dampens the speed with which a population runs uphill. It therefore acts as a safe-
guard against a premature colonization of a local -and possibly inferior- optimum.

Another mechanism available in Galapagos is Exclusive Selection, where only the top
N% of the population get to mate. If you're lucky enough to be in the top N%, you'll
likely have multiple offspring.

Another common pattern in nature is Biased Selection, where the chance of mating
increases as the fitness increases. Biased Selection can be amplified by using power
functions, which have the effect of flattening or exaggerating the curve.

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Gala PagOS = Evolutionary Principles applied to Problem Solving

Coupling Algorithms

Coupling is the process of finding mates. Once a genome has been elected to mate
by the active Selection Algorithm, it has to pick a mate from the population to
complete the act. There are of course many ways in which mate selection could
occur, but Galapagos at the moment only allows one; selection by genomic distance.

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos = Evolutionary Principles applied to Problem Solving

Coalescence Algorithms

Once a mate has been selected, offspring needs to be generated. Genes in
evolutionary solvers like Galapagos behave like floating point numbers, that can
assume all the values between two numerical extremes.

Crossover Coalescence Blend Coalescence

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Gala PagOS = Evolutionary Principles applied to Problem Solving

Mutation Factories o Point Mutation

All the mechanisms we have discussed so
far (Selection, Coupling and Coalescence)
are designed to improve the quality of
solutions on a generation by generation
basis. However all of them have a tendency
to reduce the diversity in a population. G G G G G,

The only mechanism which can introduce Inversion Mutation
diversity is mutation. Several types of
mutation are available in the Galapagos
core, though the nature of the
implementation in Grasshopper at the
moment restricts the possible mutation to
only Point mutations.

GO G| Gz G3 G.;

From David Rutten’s blog http://www.grasshopper3d.com/profiles/blogs/evolutionary-principles



Grasshopper Galapagos = Evolutionary Principles applied to Problem Solving

=181
pick crdes

Yy
c Edt Vew Avange Soltion ‘Windom | Heb

rrams  Logic Scalr  Veckr Curve  Suface  Mesh Intersect  XForm  Complex

VW Q2 0@ 00 QW v Blidlel w9 OFe
@ W@ OO VW DU & [l (sl »
— —

o @B-He Q8W. Pd 5@ 3

B e e S
7010 N
‘ 'S R
.._ ' Pl Vam N N
* | Nt : '\;_ BN
4
+
i (]‘f’i\ [
. * ..... -—/ \.~_/. \'?
e SRR || ¢ e s s .
Generation limit * o> : e EIERIZIIRL
Masdrmum alowed rumber of e | — . . , |
| 0123456789100 12 12 165 18 O — . ,
. !
o | cwed [H——44

From http://www.grasshopper3d.com/group/galapagos

Watch https://vimeo.com/23061345



https://vimeo.com/23061345

Case Study: Genetic Stair by Caliper Studio, NYC, 2009
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Case Study: Genetic Stair by Caliper Studio, NYC, 2009
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Case Study: Genetic Stair by Caliper Studio, NYC, 2009
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Case Study: Genetic Stair by Caliper Studio, NYC, 2009
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